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Quantized superfluid vortex dynamics on cylindrical surfaces and planar annuli
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Superfluid vortex dynamics on an infinite cylinder differs significantly from that on a plane. The requirement
that a condensate wave function be single valued upon once encircling the cylinder means that such a single
vortex cannot remain stationary. Instead, it acquires one of a series of quantized translational velocities around
the circumference, the simplest being ±h̄/(2MR), with M the mass of the superfluid particles and R the radius
of the cylinder. A generalization to a finite cylinder automatically includes these quantum-mechanical effects
through the pairing of the single vortex and its image in either the top or bottom end of the surface. The dynamics
of a single vortex on this surface provides a hydrodynamic analog of Laughlin pumping. The interaction energy
for two vortices on an infinite cylinder is proportional to the classical stream function χ (r12), and it crosses
over from logarithmic to linear when the intervortex separation r12 becomes larger than the cylinder radius. An
appendix summarizes the connection to an earlier study of Ho and Huang for one or more vortices on an infinite
cylinder. A second appendix reviews the topologically equivalent planar annulus, where such quantized vortex
motion has no offset, but Laughlin pumping may be more accessible to experimental observation.

DOI: 10.1103/PhysRevA.96.063608

I. INTRODUCTION

The dynamics of point vortices in an incompressible
nonviscous fluid has been of great interest since the late 19th
century [1]. For example, given an initial vortex configuration,
the subsequent motion obeys first-order equations of motion,
which differs greatly from the usual second-order Newtonian
equations describing point masses. In addition, the x and
y coordinates of each vortex serve as canonical variables,
analogous to x and p for a Newtonian point particle.

This description has found wide application to superfluid
4He which acts like an incompressible fluid for vortex motion
much slower than the speed of sound ∼240 m/s [2]. Such
superfluid systems involve a complex macroscopic condensate
wave function � = |�|ei�, whose phase � determines the
superfluid velocity v = h̄∇�/M , where M is the atomic
mass. In this way, the quantum-mechanical phase � becomes
the velocity potential. The creation of dilute ultracold super-
fluid atomic Bose-Einstein condensates (BECs) in 1995 has
subsequently stimulated many new applications of the same
formalism [3–5].

Classical nonviscous irrotational and incompressible hy-
drodynamics describes well the dynamics of vortices in
superfluid 4He, with the additional condition of quantized
circulation [2]. Although dilute ultracold superfluid BECs
are compressible, local changes in the density become small
in the Thomas-Fermi (TF) limit, which typically describes
many important experiments [6]. In this limit, the condition of
current conservation for steady flow ∇ · (nv) = 0 reduces to
the condition of incompressibility ∇ · v = 0. For such incom-
pressible flow, the stream function χ provides an important
alternative description of the superfluid flow. Specifically, for
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two-dimensional flow in the xy plane, the velocity becomes

v = (h̄/M) n̂ × ∇χ, (1)

where n̂ = x̂ × ŷ is the unit vector normal to the two-
dimensional plane, following the right-hand rule.

For such irrotational incompressible flow in two dimensions
(x,y), the complex variable z = x + iy provides a natural
framework for vortex dynamics. It is helpful to introduce a
complex potential F (z) = χ (r) + i�(r), with r = (x,y). For
any such analytic function, the Cauchy-Riemann conditions
yield the components of velocity:

vx = h̄

M

∂�

∂x
= − h̄

M

∂χ

∂y
and vy = h̄

M

∂�

∂y
= h̄

M

∂χ

∂x
.

(2)

These conditions give the compact representation of the
hydrodynamic flow velocity components,

vy + ivx = (h̄/M) F ′(z), (3)

in terms of the first derivative F ′(z) of the complex potential.
Note that the representation of v in terms of the velocity

potential � ensures that the flow is irrotational (namely
∇ × v = 0), apart from singularities associated with the vortex
cores. This applies to all superfluids in both two and three
dimensions. In contrast, the representation in terms of the
stream function ensures that the flow is incompressible with
∇ · v = 0, for it can be rewritten as v = −(h̄/M)∇ × (n̂χ ).
This condition does not apply generally to all superfluids, but
it can be very useful in many specific cases.

For flow in a plane, the stream function χ (r) has the special
advantage that χ takes a constant value along a streamline
of the hydrodynamic flow. In addition, as shown below, the
interaction energy between two vortices at r1 and r2 is directly
proportional to χ (r12), where r12 = r1 − r2 is the intervortex
separation, as discussed in [7].
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All these results are familiar in the case of point vortices
in a plane. For example, the complex potential for a positive
unit vortex at the origin is F (Z) = ln Z = ln r + iφ, where
r =

√
X2 + Y 2 and tan φ = Y/X. Hence F ′(Z) = 1/Z. It is

not difficult to verify that v = (h̄/Mr)φ̂ and that the vorticity
ζ = ∇ × v is singular, with ζ = (2πh̄/M) n̂ δ(2)(r). It follows
from familiar vector identities that the stream function for a
point vortex at the origin obeys an inhomogeneous equation
with the vorticity as its source:

∇2χ (r) = 2πδ(2)(r), (4)

and is thus effectively a two-dimensional Coulomb Green’s
function. In general, the stream function also satisfies various
boundary conditions. Typically, boundaries break translational
invariance, and the stream function depends symmetrically on
the two variables: χ (r,rj ) = χ (rj ,r).

More recently, the behavior of singularities in various order
parameters on curved surfaces has attracted great interest. The
simplest such case is a superfluid vortex with a single complex
order parameter, although liquid crystals present many more
intricate examples [8,9].

Here we focus on the dynamics of point vortices in a
thin superfluid film on a cylindrical surface of radius R.
We start with an infinite cylinder in Sec. II and show that
the identification of the velocity potential as the quantum-
mechanical phase � requires a single vortex to move uniformly
around the cylinder with (in the simplest case) one of two
specific quantized values.

In Sec. III we study the dynamics of two vortices on a
cylinder, which is unexpectedly rich. Vortices with opposite
signs move uniformly perpendicular to the relative vector r12,
in the direction of the flow between them. This behavior is
closely related to the quantized vortex velocity found in Sec. II.
In contrast, two such vortices with the same sign maintain their
centroid R12 = 1

2 (r1 + r2), displaying both bound orbits and
unbounded orbits, in close analogy to the motion of a simple
pendulum.

In Sec. IV, we evaluate the interaction energy E12 of two
vortices, relating it to the relevant stream function χ (r12). This
result allows us to re-express the dynamics of two or more
vortices in terms of forces, including the Magnus force [7].

Section V considers a vortex on a finite cylinder of length L,
where the method of images provides an exact solution in terms
of the first Jacobi ϑ function [10,11]. The resulting dynamics
under the action of additional external rotation constitutes a
direct hydrodynamic analog of the Laughlin pumping.

Previously, Ho and Huang [12] studied spinor condensates
on a cylindrical surface and found some of the results that we
present here. Appendix A compares the two approaches.

Appendix B reviews the annular geometry in a plane,
considered in Ref. [11]. The geometry of a planar annulus
is topologically equivalent to that of a finite cylinder, so that
the vortex dynamics on these two surfaces have some close
resemblances.

II. POINT VORTEX ON AN INFINITE CYLINDER

On the surface of a cylinder of radius R, let −πR � x �
πR represent the coordinate around the circumference and
−∞ � y � ∞ the unbounded coordinate along the cylinder’s

axis. The unit vector n̂ is then the outward normal to
the surface of the cylinder. For a thin superfluid film, the
problem is apparently equivalent to the infinite plane with
periodic repetitions of a strip of width 2πR along x̂. As seen
below, however, this classical picture violates the quantum-
mechanical requirement of a single-valued condensate wave
function once encircling the cylinder. We find that a single
vortex on an infinite cylinder must move around the cylinder
with a set of quantized velocities.

Throughout this section we consider a single point vortex
at the origin of the cylindrical surface (x = 0,y = 0). Note
that x/R is just the azimuthal angle φ in cylindrical polar
coordinates. With the usual complex notation z = x + iy and
f (z) a function of this complex variable, the complex potential
F (z) = ln f (z) corresponds to a positive vortex at each zero
of f (z). In particular, Sec. 156 of [1] notes that the choice,

F (z) = ln
[
sin
( z

2R

)]
, (5)

represents a one-dimensional periodic array of positive vor-
tices at positions zn = 2πnR, with n ∈ Z.

At first sight, this complex potential should also represent
a single superfluid vortex at the origin of an infinite cylinder.
Note, however, that sin(z/2R) changes sign for z → z + 2πR.
Consequently, the present velocity potential �(r) = ImF (z)
is not acceptable as the phase of a single-valued quantum-
mechanical condensate wave function, because ei�(r) remains
unchanged only for x → x + 4πR.

A. Velocity potential for one vortex on a cylinder: classical
hydrodynamics vs quantized superfluidity

Here, we explore the source of this discrepancy by evaluat-
ing in detail the velocity potential,

�(r) = Im ln
[
sin
( z

2R

)]
= arctan

[
tanh (y/2R)

tan (x/2R)

]
. (6)

As expected, this reduces to arctan(y/x) for r 	 R.
In the quantum interpretation, the velocity potential �

is also the phase of the condensate wave function, which
leads to the following inconsistency: Note that � increases
by ∓sgn(y)π when x → x + 2πR, where sgn(y) = |y|/y.
Hence the condensate wave function would be antiperiodic
once going around the cylinder. As seen below, the actual fluid
velocity itself is indeed continuous and periodic, so that this
complex potential is acceptable as a classical solution but not
as a quantum mechanical one if the vortex itself remains at rest.

Consider the lines of constant phase. For a single vortex on a
plane, these lines extend radially from the center of the vortex,
rather like electric field lines from a two-dimensional point
charge. On a cylinder, the periodicity means that half the phase
lines go upward and half go downward (see Fig. 1 top row). The
net change in phase on going once around the circumference
of the cylinder is ∓π , depending on the sign of y.

An illuminating way to think about this question focuses on
a vorticity flux of 2π associated with a singly quantized vortex
(measured in units of h̄/M). For a positive stationary vortex
with charge q = 1 at the origin of the surface, the flux comes
from inside the cylinder and emerges radially outward along n̂
through the center of the vortex. In the present case of a vortex
at rest, the flux comes symmetrically with π flowing downward
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FIG. 1. Phase (left), streamlines (center), and velocity flow (right) for single point vortex on an infinite cylinder. (Top) No additional
uniform flow; since the phases at x = ±π/R differ by π , this is not an acceptable solution for a quantum superfluid. (Middle and bottom)
Additional uniform flow specified by C = 1/2 and C = −1/2, respectively (or, equivalently, n↑ = 0 and n↑ = −1).

from y → ∞ and π flowing upward from y → −∞, as is clear
from Fig. 1 (top row). Physically, the vortex on the surface can
be considered the end of a vortex line in a superfluid filling
the interior of the cylinder. Clearly the vortex line must come
wholly from one end or the other, so that such a flux splitting
is not possible. We’ll see that a moving vortex indeed satisfies
these conditions (for special values of the motion).

More generally, the flow velocity is v = h̄∇�/M . Hence
adding a uniform flow in the x̂ direction will alter the phase
gradient and thus alter the phase change in going around
the cylinder. Specifically, consider the more general complex
potential for a vortex located at x0 = 0 on the cylinder,

F (z) = ln
[
sin
( z

2R

)]
+ i C

z

R
, (7)

where C is a dimensionless real constant. The additional
uniform velocity is (h̄/MR) C x̂. As a result, the previous
expression for � acquires the additional term Cx/R. The
additional net phase change on going once around the cylinder
is 2πC. Thus merely adjusting the value C can yield any
desired phase change; for example, the choice C = 1/2 would
give zero total phase change for y > 0 and 2π total phase
change for y < 0. In essence, this behavior is simply the
hydrodynamic analog of the familiar Bohm-Aharonov effect.
Alternatively, it represents a sort of gauge freedom to alter the
phase.

Figure 1 (middle and bottom) shows the phase pattern for
a single positive point vortex with additional flow velocity
C = ±1/2. These choices ensure that the lines of constant
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phase all collect into the lower (upper) part of the cylinder for
C = 1/2 (−1/2) leaving the fluid asymptotically at rest in the
upper (lower) end of the cylinder. In these special cases, the net
change in phase upon once encircling the cylinder now will be
0 or ±2π , merely by counting the phase lines crossing the path.
Note that the two solutions may be mapped onto each other
by a rotation of 180◦, which effectively interchanges the two
ends of the cylinder. Evidently, quantum mechanics requires
that the phase lines from a single vortex on a cylinder must
flow to ±∞ in multiples of 2π to ensure that the condensate
wave function is single valued.

To clarify these questions, consider a single positive vortex
on a cylinder at the origin. Integrate in a positive sense
the hydrodynamic fluid velocity around a closed rectangular
contour (namely the circulation) with vertical sides at x =
∓πR. Clearly, the contributions of these vertical sides cancel
because of the periodicity of the flow velocity. In addition,
the circulation integral will be 0 if the horizontal parts do
not enclose the vortex, and 2π if the horizontal parts do
enclose the vortex. For C = 0 (namely no external flow), the
top and bottom parts each contribute π to the dimensionless
circulation. If C 
= 0, the contributions of the top and bottom
parts each shift linearly in such a way that the net circulation
is unchanged. In particular, for C = n↑ + 1

2 with n↑ an integer
that specifies the quantum of circulation on the horizontal path
above the vortex, each horizontal part contributes a multiple
of 2π .

The additional uniform flow means that the vortex now
moves uniformly around the cylinder with quantized velocity,
required to satisfy the quantum-mechanical condition that the
condensate wave function be single valued. For any complex
velocity function F ′(z) that contains a vortex at some point
z0, the following limit gives the complex velocity of that
vortex as

ẏ0 + i ẋ0 = h̄

M
lim
z→z0

[
F ′(z) − 1

z − z0

]
. (8)

In the present case, this expression simply reproduces the
previous result that the vortex moves with the local uniform
flow velocity. For C = 0 with no applied flow, any particular
vortex remains at rest, either from this mathematical treatment
or more physically by noting that the induced flow at any
particular vortex cancels because of the left-right symmetry of
the one-dimensional periodic array.

Focus on the two simplest cases with C = ±1/2, in which
case the flow vanishes as y → ±∞ [see Fig. 1 (middle and
bottom)]. The corresponding complex potential becomes

F±(z) = ln

[
sin

(
z

2R

)]
± iz

2R
= ln(e±iz/R − 1) + const.

(9)

Apart from the additive constant, this complex potential is
just that considered by Ho and Huang [12] as the two
possible conformal transformations from a plane to a cylinder
(corresponding to the choice ±i). This connection clarifies the
special role of the two values C = ±1/2. We consider this
point in detail in Appendix A.

B. Stream function for one vortex on a cylinder

As noted in Sec. I, the stream function χ (r) = ReF (z)
provides a clear picture of the hydrodynamic flow through its
contour plots. In the present case, χ (r) is a little intricate, which
illustrates a principal advantage of this complex formalism.
Specifically, the stream function for one vortex on the surface
of a cylinder of radius R is

χ (r) = Re
{

ln
[
sin
( z

2R

)]
+ iC

z

R

}

= 1

2
ln

∣∣∣∣sin

(
x + iy

2R

)∣∣∣∣
2

− C
y

R
. (10)

Familiar complex trigonometric identities give

χ (r) = 1

2
ln
[
sin2

( x

2R

)
+ sinh2

( y

2R

)]
− C

y

R

= 1

2
ln

[
1

2
cosh

( y

R

)
− 1

2
cos
( x

R

)]
− C

y

R
, (11)

where each form is useful in different contexts.
This stream function has the proper periodicity in x

and reduces to the result 1
2 ln[(x2 + y2)/4R2] − Cy/R =

ln(r/2R) − Cy/R for a single vortex at the origin when
r 	 R. In contrast, for |y| � R, the stream function has the
very different and asymmetric behavior χ (r) ≈ |y|/(2R) −
Cy/R, independent of x. Correspondingly, ∇χ (r) ≈
ŷ [sgn(y)/(2R) − C/R] in this limit, and the hydrodynamic
flow velocity reduces to a uniform flow (from C) plus
an antisymmetric uniform flow: v(r) = (h̄/M) n̂ × ∇χ (r) ≈
−x̂ [(h̄/2MR) sgn(y) − h̄C/MR].

To understand this asymptotic behavior, consider the
induced flow of the corresponding infinite one-dimensional
array of positive vortices in the plane (for simplicity, take
C = 0). Close to each vortex, the flow circulates around
that vortex in the positive sense, but for |y| � πR, the
combined flow instead resembles that of a “vortex sheet”
(see Sec. 151 of [1]). Specifically, a vortex sheet arises
when the transverse velocity has a discontinuity. For example,
consider the antisymmetric flow field v = −v0 x̂ sgn(y). Here,
the vorticity is ∇ × v = 2v0 δ(y) ẑ, which follows either by
direct differentiation or with Stokes’s theorem. In particular,
the asymptotic flow from a periodic array of positive unit
vortices along the x axis with spacing 2πR approximates a
vortex sheet with v0 = h̄/(2MR).

Evidently, the hydrodynamic flow for a single vortex on
a cylinder is considerably more complicated than that for a
single vortex in the plane. Note that the hydrodynamic flow
arises from an analytic function F (z), so that χ (r) and �(r)
both satisfy Laplace’s equation (apart from the local singularity
associated with the vortex). Such a two-dimensional function
cannot be periodic in both directions. Instead, the sum of the
curvatures associated with x and y must vanish, so that the
solution necessarily decays exponentially for large |y| (in this
case, to a nonzero constant), as seen here from the hyperbolic
functions in �(r) and χ (r).

In Fig. 1 (top middle) we show a contour plot of the stream
function χ (r) for a single vortex on the surface of a cylinder
with C = 0. Lamb [1] has a similar figure in Sec. 156. As ex-
pected, the streamlines on the cylindrical surface exhibit both
the periodicity in x and the exponential decay of the motion in
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the ±y direction with the characteristic length ∼R. Note the
occurrence of two topologically different types of trajectories.
This phase plot resembles that of a simple pendulum, which re-
flects the similar canonical roles of x,y for a vortex and x,p for
a pendulum. Here, the separatrix is parametrized by χ (r) = 0,
namely by sin2(x/2R) + sinh2(y/2R) = 1. Inside the closed
curves of the separatrix, the flow circulates around the vortex
and its periodic images. Outside the separatrix, the flow
continues in one direction, like a pendulum with large energy.
In the present hydrodynamic context, streamlines inside the
separatrix correspond to “libration” of the pendulum and
encircle the vortex with zero winding number around the
cylinder. Otherwise, streamlines correspond to “rotation” of
the pendulum. They do not encircle the vortex but have winding
number ∓1 around the cylinder, depending on the value of
−sgn(y).

With standard trigonometric identities, it is not hard to find
the hydrodynamic flow velocity induced by the single positive
vortex at the origin on the surface of a cylinder (here, for
simplicity, we take C = 0):

v(r) = h̄

2MR

−x̂ sinh(y/R) + ŷ sin(x/R)

cosh(y/R) − cos(x/R)

= h̄

2MR
n̂ ×

[
x̂ sin(x/R) + ŷ sinh(y/R)

cosh(y/R) − cos(x/R)

]

= h̄

M
n̂ × ∇χ (r). (12)

The resulting flow pattern is shown in Fig. 1 (top right).
For |x| 	 R and |y| 	 R, the hydrodynamic flow field re-
duces to the familiar expression v(x,y) ≈ (h̄/M) n̂ × r/r2 =
(h̄/Mr) φ̂, which falls off inversely with the distance from
the vortex in all directions. For large |y|/R on a cylinder,
in contrast, the flow velocity reduces to a constant v(x,y) ≈
−(h̄/2MR) x̂ sgn(y). In this region the periodicity around the
cylinder dominates the flow pattern, rather than the single
vortex.

III. MULTIPLE VORTICES ON A CYLINDER

It is now straightforward to generalize the previous dis-
cussion to the case of N vortices on an infinite cylinder,
each located at complex position zj and with charge qj = ±1
(j = 1, . . . ,N ). As in electrostatics, the complex potential for
multiple vortices on the cylindrical surface is simply the sum of
the complex potentials of the individual vortices, always with
the option of adding a uniform flow of the form iCz/R. For an
even number of vortices, however, this term is unnecessary.

F (N)(z) =
N∑

j=1

qjF (z − zj ) =
N∑

j=1

qj ln

[
sin

(
z − zj

2R

)]
.

(13)

The corresponding velocity potential �(N)(r) and stream
function χ (N)(r) are the imaginary and real parts of F (N)(z)
and need not be given explicitly.

A. Induced motion of two vortices on a cylinder

As noted at the end of Sec. II A, in the absence of
external flow a single vortex on a cylinder remains stationary.
Consequently, the motion of each vortex arises only from the
presence of the other vortex. Equation (8) immediately gives
the complex velocity of the first vortex,

ẏ1 + i ẋ1 = h̄

MR

q2

2
cot

(
z1 − z2

2R

)
, (14)

and similarly,

ẏ2 + i ẋ2 = − h̄

MR

q1

2
cot

(
z1 − z2

2R

)
. (15)

It is now helpful to introduce the vector notation used in
Sec. II A. For two vortices at r1 and r2, let R12 = 1

2 (r1 + r2) be
the centroid and r12 = r1 − r2 be the relative position (note
that the vector r12 runs from 2 to 1). As a result [compare
Eq. (12)], we find the appropriate dynamical equations,

Ṙ12 = h̄

MR

(
q1 − q2

4

)[
x̂ sinh(y12/R) − ŷ sin(x12/R)

cosh(y12/R) − cos(x12/R)

]
,

and

ṙ12 = h̄

MR

(
q1 + q2

4

)[−x̂ sinh(y12/R) + ŷ sin(x12/R)

cosh(y12/R) − cos(x12/R)

]
.

B. Two vortices with opposite signs (vortex dipole)

When q1 = 1 and q2 = −1, the vortex dipole moves with
no internal rotation ṙ12 = 0 (so that x12 and y12 remain
constant, simplifying the subsequent dynamics). Furthermore,
the centroid moves with uniform translational velocity,

Ṙ12 = h̄

2MR

[
x̂ sinh(y12/R) − ŷ sin(x12/R)

cosh(y12/R) − cos(x12/R)

]

= − h̄

M
n̂ × ∇χ (r12), (16)

at fixed x12 and y12. Several limits are of interest.
(1.) If |x12| 	 R and |y12| 	 R, then the translational

velocity is the same as that for a vortex dipole on a plane:

Ṙ12 = h̄

M

x̂ y12 − ŷ x12

x2
12 + y2

12

= − h̄

M

n̂ × r12

r2
12

. (17)

Detailed analysis confirms that the vortex dipole moves in the
direction of the flow between their centers.

(2.) If |y12| � R, then the ratio of hyperbolic func-
tions leaves only the x̂ component, with Ṙ12 =
(h̄/2MR) x̂ sgn(y12). This value reflects the hydrodynamic
flow from a periodic array of vortices, as mentioned near the
end of Sec. II B. In this limit, the vortex dipole will circle
the cylinder in a time 4πMR2/h̄. Note that this motion is the
same as that induced for one vortex with C = ±1/2, discussed
in Sec. II A. Hence the additional induced motion of a single
vortex on an infinite cylinder can alternatively be thought to
arise from a phantom negative vortex placed at y ′

0 → ∓∞,
corresponding to C = ±1/2.

As an example, Fig. 2 shows the hydrodynamic streamlines
for various orientations of the relative position z1 − z2.
Specifically, we plot the corresponding stream function χ for
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FIG. 2. Hydrodynamic streamlines for vortex dipole q1 = −q2 = 1 on a cylinder of radius R, for various orientations of the dipole axis.

three typical cases: y12 = 0 with motion along − ŷ, x12 = y12,
with motion along x̂ − ŷ, and x12 = 0 with motion along x̂.

C. Two vortices with same signs

In the case of two positive vortices (q1 = q2 = 1), it follows
immediately that Ṙ12 vanishes, so that the centroid of the two
vortices remains fixed. In contrast, the relative vector obeys
the nontrivial equation of motion,

ṙ12 = ẋ12 x̂ + ẏ12 ŷ

= h̄

M

[−x̂ sinh(y12/R) + ŷ sin(x12/R)

cosh(y12/R) − cos(x12/R)

]

= h̄

M
n̂ × ∇χ (r12) = v(r12). (18)

Unlike the case of opposite charges (where ṙ12 remains fixed),
the relative vector r12 now becomes time dependent. In fact, the
last form given above shows that the motion of the two positive
vortices precisely follows the hydrodynamic flow velocity of
a single vortex v(x12,y12). Hence the streamlines in Fig. 1
(central column) completely characterize the motion. Several
cases are of interest.

(1.) If x2
12 + y2

12 	 R2, then the two positive vortices
simply circle in the positive sense around their common center
R12. The curvature of the surface is irrelevant and the motion
is the same as on a flat plane.

(2.) If sin2(x12/2R) + sinh2(y12/2R) < 1, the two vortices
execute closed orbits in the positive sense around their
common center R12, but the general orbits are not circular
[by definition, they remain inside the separatrix in Fig. 1 (top
row, central column)].

(3.) If sin2(x12/2R) + sinh2(y12/2R) > 1, the two vortices
move in opposite directions, executing periodic closed orbits
around the cylinder with unit winding number. The upper
vortex moves monotonically to the left and the lower vortex
moves monotonically to the right, as seen in Fig. 1 (top row,
central column) (they remain outside the separatrix).

(4.) For relatively large |y12|/R, an expansion of the above
equation yields the approximate form,

ṙ12 ≈ h̄

MR
{−sgn(y12/R)[1 − 2 cos(x12/R) e−|y12|/R] x̂

+ 2 sin(x12/R) e−|y12|/R ŷ}. (19)

Asymptotically for |y12| � R, the variable x12 varies linearly
in time. The leading correction to this uniform horizontal
motion is a small periodic modulation for both x̂ and ŷ
components.

IV. ENERGY OF TWO VORTICES

The stream function χ (r) provides the hydrodynamic flow
velocity v(r) through Eq. (1), which is its usual role. As
shown below, however, the stream function also determines
the interaction energy E12 between two point vortices through
Eq. (23). The analogous electrostatic situation is familiar in
that the electrostatic potential gives both the electric field
from a single point charge and the interaction energy of
two point charges. For electrostatics, this connection follows
directly as the work done to bring the second charge in
from infinity. For vortices, however, such an argument is
less clear, since vortices do not act like Newtonian particles
and obey first-order equations of motion. Hence we present a
straightforward analysis that gives the interaction energy E12

of two vortices by integrating the kinetic-energy density, which
is proportional to the squared velocity field. This approach is
clearly analogous to finding the electrostatic interaction energy
of two charges by integrating the electrostatic-energy density,
which is proportional to the squared electrostatic field.

In the present model, the total energy of two vortices at rj

(j = 1,2) with unit charge qj = ±1 is the spatial integral of
the kinetic-energy density,

Etot = 1
2nM

∫
d2r[q1 v(r − r1) + q2 v(r − r2)]2

= 1
2nM

∫
d2r
[|v(r − r1)|2 + |v(r − r2)|2

+ 2q1q2 v(r − r1) · v(r − r2)], (20)

over the surface of the cylinder. Here, v(r) is the hydrodynamic
velocity field of a single positive unit vortex at the origin, n

is the two-dimensional number density, and M is the atomic
mass.

A. Interaction energy

As noted in Secs. II A and II B, for large |y|/R, the
asymptotic velocity field of a single vortex on a cylinder is
uniform. Hence the kinetic energy of any single vortex diverges
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linearly as the upper and lower integration boundaries on the
cylinder become large (namely |y| = Y → ∞). As a result,
each term in the above kinetic energy of two vortices on
a cylinder separately diverges. The only case with a finite
total kinetic energy is the vortex dipole with (say) q1 = 1 and
q2 = −1, since the two asymptotic hydrodynamic velocity
flow fields then cancel.

It is convenient to use the stream function to characterize the
local fluid velocity of the j th vortex: v(r − rj ) = (h̄/M)n̂ ×
∇χj , where χj = χ (r − rj ) [compare Eq. (1)]. The operation
n̂× simply rotates the following vector through π/2 and
we find

Etot = nh̄2

2M

∫
d2r(q1∇χ1 + q2∇χ2)2

= nh̄2

2M

∫
d2r{∇ · [(χ1 + q1q2χ2)∇(χ1 + q1q2χ2)]

−χ1∇2χ1 − χ2∇2χ2 − q1q2(χ1∇2χ2 + χ2∇2χ1)}.
(21)

We follow de Gennes’s argument for type-II superconductors
[13], but the analysis is also familiar from classical electrostat-
ics. Here, the two-dimensional surface integral runs over the
region −πR � x � πR and −Y � y � Y , where Y → ∞.

The first term above involves the divergence of the total
derivative 1

2∇(χ1 + q1q2χ2)2, and the divergence theorem
reduces it to an integral on the boundary with outward unit
normals. The contributions from the vertical parts at x = ±πR

cancel because the integrand is periodic with period 2πR.
In general, the contributions from the horizontal parts at
y = ±Y separately diverge linearly, except for the special case
of a vortex dipole with q1q2 = −1. The relevant quantity is
1
2∂y(χ1 − χ2)2 for large |y|. Equation (11) gives (here we take
C = 0 since the system is neutral)

χ1 − χ2 = 1

2
ln

[
sin2[(x − x1)/2R] + sinh2[(y − y1)/2R]

sin2[(x − x2)/2R] + sinh2[(y − y2)/2R]

]

≈ |y − y1| − |y − y2|
2R

+ · · ·

= constant + · · · for |y| → ∞, (22)

where the corrections are exponentially small for large |y|. It
is now clear that each horizontal contribution vanishes for the
present case of a vortex dipole, reflecting the overall charge
neutrality.

It remains to evaluate the second line of Eq. (21). We already
noted that ∇2χj = ∇2χ (r − rj ) = 2πδ(2)(r − rj ), and the
interaction energy (the terms involving the cross product of
χ1 and χ2) thus becomes

E12 = −(2πnh̄2/M) q1q2 χ (r12), (23)

for general choice of q1q2. The dynamics of two vortices
involves gradient operations like ∇1E12, so that any divergent
constant becomes irrelevant (alternatively, we can redefine the
zero of the energy). As in Eq. (7) of [7], it is convenient to take
out a factor 2πnh̄, writing

V12 = −q1q2 (h̄/M) χ (r12), (24)

FIG. 3. Energy of a vortex dipole on an infinite cylinder, as
a function of the intervortex separation r12, for a dipole oriented
along the axis of the cylinder and moving along the equatorial
direction (dark blue), and for a vortex dipole oriented along the
equator and moving along the axial direction (light orange). The
vortex core size is set to ξ = R/10. Symbols display the numerical
evaluation of Eq. (21), and solid lines show the analytical result
in Eq. (27). The dot-dashed green line is the usual result on the
plane, Etot = (2πh̄2n/M)[ln(r12/2R) + ln(2R/ξ )], and the dashed
line is the asymptotic behavior for large axial separation y12 � R,
Etot = (2πh̄2n/M)[y12/(2R) + ln(R/ξ )].

which properly reduces to q1q2 (h̄/M) ln(2R/r12) for small
intervortex separation.

B. Self-energy of one vortex

Equation (21) also contains two self-energy terms, one for
each vortex. Consider a single vortex 1 at the origin with
self-energy,

E1 = nh̄2

2M

∫
d2r ∇χ (r) · ∇χ (r)

= nh̄2

2M

∫
d2r {∇ · [χ (r)∇χ (r)] − χ (r)∇2χ (r)}. (25)

A heuristic approach for the self-energy terms (those involving
−χj∇2χj ) in Eq. (21) is to cut off the singularity at the small
core radius ξ , which gives

E1 = πnh̄2

M
ln

(
2R

ξ

)
. (26)

The finite total energy of a vortex dipole is simply the sum of
the interaction energy and the two self-energies,

Etot = E12 + 2E1 = 2πnh̄2

M

[
χ (r12) + ln

(
2R

ξ

)]
. (27)

Note that this total vortex energy reduces to the familiar
ln(r12/ξ ) for small r12. Otherwise it has a very different
form and grows linearly for |y12| � R (see Fig. 3). This
interaction energy was already discussed in previous studies of
Berezinskii-Kosterlitz-Thouless behavior for a thin cylindrical
film [14], and of vortex dipoles on capped cylinders [9].

This analysis holds whenever a stream function describes
the flow, even in the presence of boundaries when χ (r,rj ) in-
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volves two separate variables. Here, it yields the general result,

Etot = −πnh̄2

M

2∑
j,k=1

qjqkχ (rj ,rk), (28)

augmented by the cutoff at ξ when j = k.
As seen below, this approach also works for vortices on a

finite cylinder, where the method of images gives the complex
potential (see Sec. V). Finally, it describes the energy of point
vortices in a planar annulus [11] (see Appendix B).

C. Vortex motion as response to applied force

The modified interaction energy V12(r12) in Eq. (24) allows
us to rewrite the two vector dynamical equations near the start
of Sec. III A as follows:

q1 ṙ1 = −n̂ × ∇1V12 and q2 ṙ2 = −n̂ × ∇2V12. (29)

We can interpret the quantity F1 = −∇1V12 as the force
that vortex 2 exerts on vortex 1, and similarly with F2 =
−∇2V12 = −F1, where the last relation follows because V12

depends only on the difference of the coordinates.
In this way, the dynamical equations take the intuitive form

(see Sec. III of [7]),

q1 ṙ1 = n̂ × F1 and q2 ṙ2 = n̂ × F2 = −n̂ × F1. (30)

Hence a vortex moves perpendicular to the applied force,
which is often called the Magnus effect. Equivalently, we
can introduce the “Magnus force” FM

j = qj n̂ × ṙj , and
the dynamical equation then becomes FM

j + Fj = 0. These
equations concisely express two-dimensional vortex dynamics
in a general form, applying not only to motion on a plane but
also on a cylinder.

D. Energy of multiple vortex dipoles

As seen in Sec. III, the stream function for a set of N

vortices on an infinite cylinder is the sum of individual terms
χ =∑N

i=1 χi , where we assume N is even. The total kinetic
energy of the vortices is proportional to

∫
d2r|∇χ |2 over the

area of the cylinder. This behavior is completely analogous
to the electrostatic energy for two-dimensional point charges
on a cylindrical surface, since the electrostatic energy is
proportional to the integral

∫
d2r|E|2, and E is the (negative)

gradient of the electrostatic potential P . Furthermore, the total
electrostatic potential is a sum of contributions Pj from each

charge, like the similar structure of the total χ . Finally, Eq. (4)
shows that the stream function χ obeys Poisson’s equation with
each vortex as a source, in complete analogy to the electrostatic
potentialP which also obeys Poisson’s equation with the point
charges as sources.

Thus, by analogy with two-dimensional electrostatics, the
energy of multiple pairs of point vortices on the infinite
cylinder follows immediately as the sum over all pairs plus
the sum over all self-energies,

Etot = Eint + Eself =
N∑

i<j

Eij +
N∑
i

Ei

= −
N∑

i<j

qiqj

2πnh̄2

M
χ (r ij ) + N

πnh̄2

M
ln

(
2R

ξ

)
. (31)

If the system is overall neutral, then the total energy is
finite; otherwise, there are divergent constant terms that
do not affect the dynamics of individual vortices. Similar
divergences appear in two-dimensional electrostatics unless
the total electric charge vanishes.

Equations (1), (3), and (31) together give the general
dynamical equations,

qk ẋk = ∂Vint

∂yk

and qk ẏk = −∂Vint

∂xk

, (32)

where Vint = −∑N
i<j qiqj (h̄/M)χ (r ij ). Thus Vint serves as

a “Hamiltonian” with canonical variables (xk,yk) that deter-
mines the motion of all the vortices.

V. SINGLE VORTEX ON A CYLINDER OF
FINITE LENGTH

As seen in the previous sections, the complex potential
generated by a single positive vortex located at the origin of a
cylinder with radius R and of infinite length, is

F (z) = ln
[
sin
( z

2R

)]
. (33)

The corresponding solution on a cylinder with finite length
L (with 0 � y � L) follows with the method of images.
Consider a physical vortex located at z0 = (x0 + iy0) with
0 < y0 < L. Reflect the potential of the unbounded solution
along the planes y = iL and y = 0 and reverse the charge of
successive image vortices. This procedure creates an infinite
set of positive vortices at positions z(n,+) = z0 + 2inL and
negative vortices at z(n,−) = z∗

0 + 2inL. We find

FL(z) =
∑
n∈Z

{
ln

[
sin

(
z − z(n,+)

2R

)]
− ln

[
sin

(
z − z(n,−)

2R

)]}
= ln

[∏
n∈Z

(
sin(z+/R − iβn)

sin(z−/R − iβn)

)]
, (34)

where z+ = (z − z0)/2, z− = (z − z∗
0)/2, and β = L/R.

Examine the infinite product in Eq. (34) in detail:

∏
n∈Z

(
sin(z+/R − iβn)

sin(z−/R − iβn)

)
= sin(z+/R)

sin(z−/R)

∞∏
n=1

(
sin(z+/R − iβn) sin(z+/R + iβn)

sin(z−/R − iβn) sin(z−/R + iβn)

)

= sin(z+/R)

sin(z−/R)

∞∏
n=1

(
2 cos(2z+/R) − q2n − q−2n

2 cos(2z−/R) − q2n − q−2n

)
= ϑ1(z+/R,q)

ϑ1(z−/R,q)
, (35)
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FIG. 4. Single vortex on a finite cylinder of length L = 5R, located at y0 = 3R. From left to right, plots show the phase �, the stream
function χ , and the velocity field v.

where q = e−β = e−L/R . Here, ϑ1(z,q) denotes the first Jacobi
ϑ function, defined by either its product form or its series
form [10],

ϑ1(z,q) =2q1/4 sin(z)
∞∏

n=1

(1 − q2n)(1 − 2q2n cos(2z) + q4n)

=2
∞∑

n=0

(−1)nq(n+1/2)2
sin [(2n + 1)z]. (36)

This function has simple zeros at the complex points z =
mπ + nπτ , where m,n ∈ Z and τ is a complex number with
positive imaginary part. In addition, the parameter q = eiπτ

obeys the condition |q| < 1. Here, τ = iβ/π = iL/πR and
hence q = e−L/R , as noted above.

The final complex potential for a vortex located at z0 on
a cylinder of length L and radius R has the relatively simple
analytic form,

FL(z) = ln

[
ϑ1
(

z−z0
2R

,e−L/R
)

ϑ1
( z−z∗

0
2R

,e−L/R
)
]
. (37)

Figure 4 shows the phase �(r) = ImFL(z), the stream function
χ (r) = ReFL(z), and the vector velocity field v(r) obtained
from vy + ivx = (h̄/M)F ′

L(z). These plots may be compared
to the analogous ones for an infinite cylinder shown in Fig. 1
(middle row).

The first Jacobi theta function ϑ1(z,q) changes sign when
z → z ± π , immediately proving that the phase of the wave
function changes by integer multiples of 2π when x → x ±
2πR. In particular, the integral

∫ πR

−πR
dx vx , computed at fixed

y, equals 0 above the vortex (y > y0), and 2πh̄/M below (y <

y0), as is clear from Fig. 4 (left). Hence, the complex potential
FL(z) always generates “quantum-mechanically acceptable”
solutions that move uniformly around the cylinder.

By construction, the fluid is basically at rest above the
vortex, and in motion below it. This result may be understood
by noting that the original vortex and its image below the
bottom end of the cylinder replicate a vortex dipole located at
(z0,z

∗
0). In this basic “building block,” the fluid flow is largely

confined to the region between the two vortices and vanishes
at large distances from the line (or domain wall) joining the
two vortices.

Note furthermore that vy is manifestly antisymmetric
around a vertical axis passing through the vortex core [namely,
vy(x − x0,y) = −vy(x0 − x,y)], so that its line integral along
a circumference (at fixed y) vanishes. As a consequence, the
angular momentum per particle on the cylinder is simply
h̄(y0/L). If angular momentum were to be “pumped” at a
constant (slow) rate into the system (namely, if the cylinder
were to be spun with a linearly increasing rotation frequency,
or if an increasing synthetic flux pierced the surface of the
cylinder, as discussed in Ref. [15]), a vortex would enter
the lower rim of the cylinder and progressively spiral up the
cylinder. Once the vortex reaches the upper rim and leaves the
cylinder, the angular momentum per particle would increase
by exactly h̄. This mechanism is a direct hydrodynamic analog
of the Laughlin pumping [16].

A. Velocity of the vortex core

The velocity of the vortex core follows from Eq. (8),

lim
z→z0

(
F ′

L(z) − 1

z − z0

)
= − 1

2R

ϑ ′
1(iy0/R,e−L/R)

ϑ1(iy0/R,e−L/R)
, (38)

where ϑ ′(z,q) indicates the derivative of ϑ with respect to its
variable z. This function is purely imaginary, indicating that
the vortex moves solely along the x̂ direction, and its velocity
diverges as it approaches either end of the cylinder (namely,
one of the image charges), as shown in Fig. 5. If the vortex is
located at the middle of the cylinder at z0 = x0 + iL/2, one
may use the property ϑ ′

1(iu/2,e−u) = −iϑ1(iu/2,e−u) (valid
for generic real u > 0) to show that it moves uniformly around
the cylinder with speed,

ẋ0 = h̄/2MR when y0 = L/2, (39)

as seen in Fig. 5. Here the rightward motion arises because we
chose to pair the vortex with its image in the lower boundary
of the cylinder. Had we instead used the image in the upper
boundary at z∗

0 + 2iL, the motion would have been to the left
with the same magnitude. This broken symmetry is just that
seen in Sec. II associated with the choice C = ±1/2.

B. Analytical limits for long and short cylinders

When L � R, the parameter q is small, so that we
may approximate ϑ1(z,q) ≈ 2q1/4 sin(z). For a vortex at the
complex position z0, let z ≈ z0 + z′, where z′ = z − z0 is
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FIG. 5. Velocity of the vortex core as a function of its vertical
coordinate y0, for various cylinder lengths L (from top to bottom, on
the left side, the lines represent L = R,5R,10R). The dotted lines
are the approximate results, valid in the limit L � πR, obtained
from Eq. (44). The blue dotted line is indistinguishable from the
solid one.

small. Hence the previous FL(z) becomes

FL(z) ≈ ln

[
sin(z′/2R)

sin (2iy0/2R + z′/2R)

]
, (40)

where we assume z0 = iy0. It is convenient to take y0 = L/2,
placing the vortex at the center of the cylinder.

In this case, the denominator here becomes
sin (iL/2R + z′/2R) ≈ i 1

2eL/2R(1 − iz′/2R). As a result, we
find the approximate expression,

FL(z) ≈ ln sin

(
z′

2R

)
+ iz′

2R
− L

2R
− iπ

2
+ ln 2. (41)

Apart from the additive constant terms, this result is precisely
that found in Sec. II A for an infinite cylinder with a vortex at
the origin and zero velocity flow on its (distant) upper rim.

When we have the opposite limit L 	 R, we may use the
Jacobi imaginary transformation that relates a theta function
with parameter τ to one with parameter τ ′ = −1/τ [10].
Here, τ ′ = iπR/L and q ′ = eiπτ ′ = e−π2R/L is now small.
The relevant transformation formula becomes

ϑ1

(
z

R
,e−L/R

)
= i

√
πR

L
e−z2/RL ϑ1

(
zπ

iL
,e−π2R/L

)
. (42)

In this way we find

FL	R(z) = ln

[
e−[(z−z0)2/4RL] ϑ1

(
π(z−z0)

2iL
,e−π2R/L

)
e−[(z−z∗

0)
2
/4RL] ϑ1

(π(z−z∗
0)

2iL
,e−π2R/L

)
]

≈ ln

[
sinh

(
π(z−z0)

2L

)
sinh

(π(z−z∗
0)

2L

)
]

+ i
y0

L

z − x0

R
. (43)

For a short cylinder, the result converges to the complex
potential generated by a row of positive vortices located at
positions z0 + 2imL, together with a row of negative ones at
positions z∗

0 + 2imL (with m ∈ Z).

We use Eq. (8) to find the velocity of the vortex core on a
short cylinder,

iM ẋ0

h̄
= lim

z→z0

(
F ′

L	R(z) − 1

z − z0

)

= − π

2L
coth

(
iπy0

L

)
+ i

y0

LR

= iπ

2L
cot
(πy0

L

)
+ i

y0

LR
. (44)

For a vortex at the center of the cylinder with y0 = L/2, this
equation gives the familiar quantized circulating motion ẋ0 =
h̄/2MR, in agreement with the result from Sec. II A for C =
1/2. In the limit R → ∞, Eq. (44) agrees with a result in
Ref. [17].

C. Energy of a vortex dipole on a finite cylinder

Although Eq. (28) gives the total energy of a vortex dipole
on a finite cylinder, the following more physical approach
clarifies the basic physics. Consider a larger surface −L � y �
L which includes both the original vortex dipole and its vortex
dipole image. The superfluid flow is symmetric in y, so that the
energy of this extended region is twice the original energy. The
complex potential on a finite cylinder (and the corresponding
stream function) may be decomposed in two contributions,
one coming from the vortex itself, and one from the image
vortex. The notation L(z) = ln |ϑ1(z/2R,q)| denotes the part
of the stream function due to the original vortex (and not to
its image), and note that L(z) ≈ ln |ηz/2R| for small z, with
η ≡ ϑ ′

1(0,q). To be very specific, the stream function obtained
from FL(z) is χ (r,rj ) = L(z − zj ) − L(z − z∗

j ).
In complete analogy with Eq. (31), the total energy on

the extended cylinder due to the original vortex dipole and
its image contains the core energies of the four vortices,
given by the stream function L evaluated at the core radius,
Ecore ≡ − 1

2 [2πL(ξ )] ≈ π ln(2R/ηξ ), plus the stream func-
tion L evaluated for the relative separation of all six possible
pairs of vortices. In particular, the energy on the extended
cylinder due to a vortex dipole with a positive vortex at
z1 = x1 + iy1 and a negative one at z2 = x2 + iy2 becomes

Eextended = 4Ecore − 2π
∑
i<j

qiqjL(zij ) (45)

= 4π ln

(
2R

ηξ

)
+ 2π [2L(z12) + L(2iy1)

+L(2iy2) − 2L(x12 + iy1 + iy2)].

The energy of a vortex dipole on the original finite cylinder is
Etot = Eextended/2.

VI. OUTLOOK AND CONCLUSIONS

On a plane, a superfluid vortex represents a singularity.
The requirement that the condensate wave function � be
single valued leads to the familiar quantization of circulation
around the vortex in units of 2πh̄/M . A thin superfluid film
on a cylindrical surface of radius R allows for closed paths
around the circumference of the cylinder as well as those
around a vortex. As discussed in Sec. II A, this condition
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requires that a single vortex on an infinite cylinder move in
the azimuthal direction with uniform velocity ±h̄/2MR as the
simplest of many allowed quantized speeds. Here, the choice
of ± sign reflects a broken symmetry, corresponding to the
two equivalent “directions” (up or down) along the axis of the
cylinder. Clearly, the topology of an infinite cylinder differs
from that of a plane, here yielding these quantized translational
motions.

For a finite cylinder of length L, the boundary conditions
require pairing with an image vortex in either end of the
cylinder. The resulting vortex dipole (the original positive
vortex and a negative image) automatically ensures that � is
single valued and gives the appropriate translational velocity
of the original vortex, where the choice of image (top or
bottom) determines the broken symmetry and the sense of
circumferential motion around the cylinder.

A superfluid film on the surface of a cylinder presents many
experimental challenges. Fortunately, this geometry is topo-
logically equivalent to a superfluid on a planar annulus, which
was studied in detail in connection with three-dimensional
superfluid 4He [11,18]. There the interest was the sequence of
equilibrium states as a function of the applied rotation.

More recently, the study of cold atoms has made dramatic
progress in preparing superfluid annuli with various dimen-
sions [19–23], leading to the creation of very thin planar
annuli with closely controlled radii [24]. To date, these recent
measurements largely rely on interferometric techniques to
study the superfluid velocity induced by various quenches.

Earlier, rapid thermal quenches with three-dimensional
condensates [25] created a single vortex line in roughly 25% of
the events. Furthermore a clever technique allowed the study
of the vortex dynamics in real time, at intervals of ∼90 ms.
Alternatively, vortices may be created by merging multiple
independent condensates [26]. We see no obvious reason why
these methods cannot also apply to the study of a single vortex
on a thin planar annulus. Appendix B examines the behavior of
a single vortex on a planar annulus, using an inverse conformal
transformation.
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APPENDIX A: CONFORMAL MAPPING FROM THE
PLANE TO THE CYLINDER

We review briefly the elegant treatment of Ho and Huang
[12], showing that their conformal transformation leads to
results that are compatible with ours. Let Z = X + iY be
the Cartesian coordinates on the two-dimensional plane and
z = x + iy the azimuthal and axial coordinates on the infinite
cylinder (as in Sec. II). The phase pattern generated by a
vortex located at position Z0 in the plane is simply �plane =
arg(Z − Z0). The phase pattern on the cylinder is now simply
�cyl = arg(w − w0), where w is a conformal mapping from
the plane to the cylinder.

Ho and Huang observe that there actually exist two (and
only two) such mappings: Z = w± = e±iz = e±ixe∓y . The
map w+ sends a tiny circle at the origin of the plane to the upper
rim of the cylinder (y → ∞), and a large circle on the plane
to the lower rim of the cylinder (y → −∞), while w− does
just the opposite.

As such, one vortex solution in the plane actually
corresponds to two vortex solutions on the cylinder, with
complex potentials,

Fcyl,±(z) = ln(e±iz − e±iz0 ). (A1)

The corresponding phase patterns are, respectively,
�cyl,+ = arg(eiz − eiz0 ), and �cyl,− = arg(e−iz − e−iz0 )
(note that Ref. [12] uses � for the phase, instead of � as used
here). Setting z0 = 0, we have

�cyl,± = arg(e±iz − 1) = Im{ln[sin(z/2)] ± iz/2} + const.,

(A2)

which coincides with the result found in Eq. (9) with a
nonzero background flow set by C = ±1/2, aside from an
extra, irrelevant constant phase. Similarly, ln |Z − Z0| yields
the stream function on the plane, so that ln |w − w0| gives the
stream function on the cylinder.

Equations (9) and (10) in Ref. [12] give, respectively,
the azimuthal and axial flow velocities vφ and vz created
by a vortex on the cylinder. A straightforward calculation
shows that

lim
z→z0

h̄

M

[
F ′

cyl,±(z) − 1

z − z0

]
= ±i

h̄

2MR
, (A3)

so that the vortex core generated by the map w+ (w−)
moves along the equator towards the right (left), with a
velocity exactly equal to ±h̄/(2MR), in agreement with our
conclusion at the end of Sec. II A.

It is now simple to understand the “need” for (and amount
of) quantization of the circulation around the top and bottom
rims of the cylinder. Focus, for example, on the solution
produced by w+, and consider a vortex in the plane, centered
away from the origin (Z0 
= 0). A small circle around the
origin of the plane encloses no vortices, and therefore has
zero circulation, while a large circle always encircles the
vortex, and therefore has circulation 2π . As discussed above,
the small and large circles are mapped by w+ to the top and
bottom parts of the cylinder, which indeed, respectively, show
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FIG. 6. Single vortex on an annulus: (top) n1 = 1, (center) n1 = 0, and (bottom) n1 = −1. In all cases, the vortex is located at z0 = 1.5R1,
and the outer radius is R2 = 2R1. From left to right, plots show the phase �, the stream function χ , and the velocity flow.

0 and 2π circulations. (See the phase pattern in the central row
of Fig. 1.)

APPENDIX B: SINGLE VORTEX ON A PLANAR ANNULUS

The surface of a cylinder of finite length is topologically
equivalent to that of a planar annulus, and therefore we expect
that the vortex dynamics will be very similar in the two cases.
To derive the dynamics on the annulus, the simplest way to
proceed is to apply the conformal mapping discussed above.

As seen in Sec. V, the complex potential for a vortex located
at z0 on a cylinder of length L and radius R reads

FL(z) = ln

[
ϑ1
(

z−z0
2R

,e−L/R
)

ϑ1
( z−z∗

0
2R

,e−L/R
)
]

+ n↑
i z

R
, (B1)

where we have allowed for the possibility of having additional
quantized flow on the upper rim of the cylinder, controlled by
the integer number n↑ = C − 1/2.

A convenient conformal mapping from the finite cylinder
of radius R to the annulus of radii R1 = R2 exp(−L/R) and
R2 is

z = −iR ln(Z/R2), (B2)

where Z is the Cartesian coordinate on the plane containing
the annulus. This mapping sends the lower rim of the cylinder
(y = 0) to R2, the upper rim (y = L) to R1, and maintains
the orientation, so that anticlockwise rotation around the
cylinder (increasing x) maps onto anticlockwise rotation
around the annulus (increasing polar angle). Applying this
mapping to Eq. (B1) immediately yields the potential for the
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FIG. 7. Velocity of the vortex core on an annulus. (Left) Results for an outer radius R2 = 2R1, and for various values of the flow circulation
around the inner radius (from top to bottom, n1 = 1,0, − 1). (Right) Wide annulus limit (R2 � R1); R̄ = √

R1R2 is the geometric mean of the
radii, and the dotted and dashed lines show the limiting cases R1 → 0 and R2 → ∞, respectively, given by Eqs. (B7) and (B8).

annulus,

Fann(Z) = Fcirc(Z) + Fimages(Z) (B3)

= n1 ln

(
Z

R2

)
+ ln

⎡
⎣ ϑ1

(− i
2 ln
(

Z
Z0

)
,R1
R2

)
ϑ1
(− i

2 ln
(ZZ∗

0

R2
2

)
,R1
R2

)
⎤
⎦,

where n1 now determines the quantized flow circulation around
the inner radius R1 of the annulus [27]. For the given mapping,
we have simply n1 = n↑.

In the latter equation, the first term arises from the quantized
flow around the inner boundary and the second arises from the
images in both the inner and outer boundaries of the annulus,
as can be shown by a direct calculation. Indeed, if we include
the original vortex and all the images, the positive vortices
are at (R1/R2)2nZ0 with n ∈ Z. Correspondingly the negative
vortices are at (R1/R2)2nZi

0, where Zi
0 denotes either image

Z′
0 = R2

1/Z
∗
0 or Z′′

0 = R2
2/Z

∗
0 and again n ∈ Z. An analysis

similar to that in Eq. (34) reproduces the previous expression
Fimages(Z), but now with either image, which makes clear the
symmetry between the inner radius R1 and the outer radius R2.
For the image in the inner (outer) radius, the vortex precesses
in the negative (positive) direction.

The velocity potential �, the stream function χ and the
velocity flow are shown in Fig. 6 for n1 = 0 and n1 = ±1.
The plots for nonzero circulation n1 = ±1 clearly indicate
that the multiply connected geometry of the planar annulus
(and of the cylinder) allows for the presence of two distin-
guishable and independent phase windings: the one around
the vortex, and the one around the inner boundary.

A vortex on a planar annulus precesses around the center
of the system, similar to the case of the cylindrical surface. A
detailed calculation gives the tangential (precessional) velocity
of the vortex core,

v0 = h̄

M|Z0|

[
n1 − 1

2
+ i

2

ϑ ′
1

(− i ln
( |Z0|

R2

)
,R1
R2

)
ϑ1
(− i ln

( |Z0|
R2

)
,R1
R2

)
]
. (B4)

To derive this result one needs to note that, in the vicinity of
the vortex core Z0,

Q(Z) ≡ − i

2Z

ϑ ′
1

(− i
2 ln
(

Z
Z0

)
,R1
R2

)
ϑ1
(− i

2 ln
(

Z
Z0

)
,R1
R2

) ≈ 1

Z − Z0
− 1

2Z0
,

(B5)

as may be seen expanding the logarithms inside the ϑ functions
to second order in Z − Z0, so that limZ→Z0 (Q(Z) − 1

Z−Z0
) =

− 1
2Z0

.

When |Z0| = R̄ ≡ √
R1R2 (the geometric mean of the

inner and outer radii), the identity ϑ ′
1(−i ln

√
q,q) =

−iϑ1(−i ln
√

q,q) valid for any real q (0 < q < 1) imme-
diately yields the simple result for the precessional velocity,

v0 = n1(h̄/M
√

R1R2). (B6)

It is intriguing to note that the mapping transforms the circle of
radius R̄ onto the circle y = L/2 going round a finite cylinder
at half its length. As such, the latter result is the direct analog
of Eq. (39). Note, however, there is an important difference:
When n1 = n↑ = 0 a vortex along this line is stationary on the
annulus, but it moves on the cylinder.

The series expansion of ϑ1 for small q may now be
used: ϑ1(α,q) = 2q1/4(sin α − q2 sin 3α) + O(q25/4). Retain-
ing only the lowest order, we find the limiting behavior for
R1 → 0,

v0 = h̄

M|Z0|
(

n1 + |Z0|2
R2

2 − |Z0|2
)

. (B7)

When n1 = 0, one recovers the well-known result for a vortex
in a trapped disk-shaped BEC.

To take the limit R2 → ∞ while retaining a dependence on
|Z0|, one needs instead to expand both ϑ1 functions to order
q9/4. Doing so gives a rather complicated expression. In the
limit R2 → ∞ we find

v0 = h̄

M|Z0|
(

n1 − R2
1

|Z0|2 − R2
1

)
, (B8)
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which is the usual result for a vortex outside a cylinder of
radius R1. Finally in the limit R1 	 |Z0| 	 R2, one finds
v0 = n1h̄/M|Z0|.

Figure 7 shows the various results found above for the
precession velocity of a vortex on an annulus. A confirmation
of the validity of the above findings may be obtained by
showing that the complex potential for the annulus with n1 = 0
reduces to the one for the disk when R1 → 0. Indeed, using
the lowest order of the series expansion of the theta function,

simple algebra shows that

Fann(Z) ≈ ln

[
sin
[
− i

2 ln
(

Z
Z0

)]
sin
[
− i

2 ln
(

ZZ∗
0

R2
2

)]
]

= ln

[
Z−Z0

Z− R2
2

Z∗
0

]
+ a const.

(B9)

Since the complex potential for the annulus reduces to the one
of the disk (apart from an irrelevant constant), the velocity
must do the same.
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(
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where γ = π/[2 ln(R2/R1)] and q = e−2πγ . This formula dif-
fers from the one provided in Ref. [11] by the phase factor√

Z∗
0/Z0, which represents a rotation of the branch cut of the

logarithm. Whenever Z0 lies on the real positive axis, however,
the phase factor is unity and the two formulas coincide. Note that
the roles of χ and � are interchanged with respect to Ref. [11],
so that we have removed an i from Eq. (10) of that work.
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